
Formatted input / output : printf / scanf

Input / output functions printf / scanf are declared in

#include <stdio.h>

 Function printf prints the formatted output to stdout;

 Function scanf reads the formatted input from stdin;

TYPE DESCRIPTION TYPE FORMAT
integer, 4 bytes int %d

integer, 8 bytes __int64 %I64d

integer, 8 bytes long long %lld

real, 4 bytes float %f

real, 8 bytes double %lf

character, 1 byte char %c

string, array of chars char[] %s

Let x = 34 is an integer. To print the value of the variable, we use the function
printf("%d",x);

If we want to print the value in n positions, we use format %nd. If the number

contains less than n digits, the spaces will be added befor the number. Next example

prints 3 spaces before number 34 (we print 5 characters in total):
printf("%5d",x);

Formatting with spaces can be used for example in printing the multiplication

table. Each number is printed in 2 positions. If number is one-digit, a space is printed

before it.

#include <stdio.h>

int i, j;

int main(void)

{

 for(i = 1; i < 10; i++)

 {

 for(j = 1; j < 10; j++)

 printf("%2d ",i*j);

 printf("\n");

 }

 return 0;

}

E-OLYMP 8545. Multiplication table Print multiplication table n * n with

alignment.

► Use a double loop to print the multiplication table. For alignment, each number

should be printed in two positions, use the format %2d.

https://www.e-olymp.com/en/problems/8545

Printing the time. Let h contains the hours, m contains the minutes and s contains

the seconds. We want to print the time in digital format like “12:45:23”, printing each

number in 2 positions. But if some number is less than 10, using the format %2d we’ll

get something like “ 2: 5: 0” (2 hours, 5 minutes and 0 seconds). In a real digital clock

we must print 0 instead of spaces: “02:05:00”. To solve this problem we must use

format %02d. Zero symbol before 2 means that instead of spaces at extra positions we

must print zeroes.

#include <stdio.h>

int h = 2, m = 5, s = 0;

int main(void)

{

 printf("%02d:%02d:%02d\n",h,m,s);

 return 0;

}

If we want to read the data in digital clock format, we can use the format
scanf("%d:%d:%d",&h,&m,&s);

E-OLYMP 514. Time for Nicholas Find the difference between the times t1 and

t2.

► Convert the start and end times to seconds. The time hh : mm : ss corresponds to

3600 * hh + 60 * mm + ss seconds.

Compute the difference t2 – t1 between them. If it is negative, then midnight

belongs to the time when Nikolas delivers gifts. In this case, 3600 * 24 should be added

to the negative difference – the number of seconds in a day. Next, compute how many

hours, minutes and seconds the found difference is.

Let d be the time of gifts delivery in seconds. Convert it to hours h, minutes m and

seconds s is the same as to represent the number d in sexagesimal notation:

 h = d / 3600;

 m = (d % 3600) / 60;

 s = d % 60;

5 14 46: :

h m s

5*60
2

14*60 46+ + 18886=

For d = 18886 we have:

 h = 18886 / 3600 = 5;

 m = (18886 % 3600) / 60 = 14;

 s = 18886 % 60 = 46;

https://www.e-olymp.com/en/problems/514

Single and multiple input / output

Solving the problems, one must distinguish the single input and multiple input. If

the input contains only one test, we speak about “single input”. If the input contains data

for some tests, we say then the problem has “multiple input”. Consider the examples.

Example. Two numbers are given. Find their sum.

Sample input Sample output
3 4 7

Solution. To solve this problem, its enough to input two numbers, find their sum

and output the result.

#include <stdio.h>

int a, b, res;

int main(void)

{

 scanf("%d %d",&a,&b);

 res = a + b;

 printf("%d + %d = %d\n", a, b, res);

 return 0;

}

E-OLYMP 518. Sum of two Find the sum of two numbers. The first line contains

number of test cases t (1 ≤ t ≤ 100). Each test consists of two integers a and b.

Sample input Sample output
3 6

4 2 3

1 2 15

7 8

► The input pair a and b does not have to be on the same line. Read the number of

test cases t. Process the tests sequentially: read a couple of numbers and print their sum.

#include <stdio.h>

int i, t, a, b;

int main(void)

{

 scanf("%d", &t);

 for (i = 0; i < t; i++)

 {

 scanf("%d %d", &a, &b);

 printf("%d\n", a + b);

 }

https://www.e-olymp.com/en/problems/518

 return 0;

}

The loop can be formed using the while operator. In this case we do not need to

use an additional variable i. The while loop continues executing as long as the

expression t-- stays true. And it stays true until n is not zero.

#include <stdio.h>

int t, a, b;

int main(void)

{

 scanf("%d", &t);

 while (t--)

 {

 scanf("%d %d", &a, &b);

 printf("%d\n", a + b);

 }

 return 0;

}

E-OLYMP 1000. a + b problem Find the value of a + b. Each line contains two

integers a and b (|a|, |b| ≤ 30000).

Sample input Sample output
4 2 6

1 2 3

7 8 15

► This problem statement differs from the previous because here we do not know

the number of test cases. So we must read input data until the end of file. Writing

program in C, we do not need to use the file operations.

The function scanf does not only read the data, but also returns the number of

arguments that has been read. So if to run the expression

i = scanf("%d %d",&a,&b);

and to enter two numbers, the variable i will be assigned the value 2. This property

of scanf function is convenient to use while reading data till the end of file. If the

program read all the data and reached the end of file, in the next call scanf returns -1.

#include <stdio.h>

int a, b;

int main(void)

{

 while(scanf("%d %d",&a,&b) == 2)

 printf("%d\n",a + b);

https://www.e-olymp.com/en/problems/1000

 return 0;

}

In the while loop we read two numbers a and b. While we do not reach the end of

file, scanf returns 2 and the body of the loop is executed (the sum of the numbers is

printed). When the end of file is reached, the scanf can’t read more data and returns -1.

The loop stops.

Remember! If you read data from the console, it is possible to enter the symbol

“end of file” pressing the keys ^Z.

Example. The input consists of multiple lines. Each line contains two nonnegative

integers a and b. For each input line print the sum of its numbers. The last line contains

two zeroes and must not be processed.

Sample input Sample output
4 2 6

1 2 3

7 8 15

0 0

Solution. This example differs from the previous because here we must process the

data not till the end of file, but till the values a = 0, b = 0.

#include <stdio.h>

int a, b;

int main(void)

{

 while(scanf("%d %d", &a, &b), a + b)

 printf("%d\n", a + b);

 return 0;

}

The conditional expression of the loop while consists of two parts: the function

scanf and the expression a + b. The loop continues until both expressions are true. It is

obvious that scanf always returns 2 (because in this example we do not reach the end of

file), and the value a + b stays true until both variables a and b are not zero (by the

condition of the problem a and b are nonnegative integers).

Remember! The arithmetic expression is true if it is not equal to 0.

E-OLYMP 520. The sum of all Find the sum of all given numbers.

► Since n ≤ 105, and each number does not exceed 109 in absolute value, then the

sum of the initial numbers can be about 1014. To compute the result, use long long type.

Read the input data till the end of file. Sum up the given numbers and print the

result.

https://www.e-olymp.com/en/problems/520

